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TABLE 111

Fused Quartz
Strip eeff (w)at
Width
(mm) %ff (St) %ff (o) 4 GHz 8 GHz 12 GHz 16 GHz

3.00 3.25 ~,26 3.28 3.31 3.36
1,50 3.06 3.09 3.10 3.12
1.00

3.15
2.96 2.97 2,98 2.99 3.02

0.50
3.06

2.81 2.86 2.87 2.88 2.89
0.15 2.63 2.66 2.6’7 2.67 2.68

Alumina

2,00 8.30 7.85 8.06 8,31
0.90

8.60
7.63 7.07 7,27 740 ;:;;

0.58 7.33 6.86 6.93 7 11

0.20
7.52

6.76 6.25 6.30 6.40
0.07

6.50
6.41 6.00 6.00 6.10 6.20

ment with the static theory (Fig. 4). The orientation of the crystal-

lite depends on the manufacturing processes and is not necessarily

constant over the substrate. The anisotropy in alumina substrates
can be inconvenient, especially when used for circuits comprising
narrow-band filters and when experimentally verifying theories.
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The Green’s Function for Poisson’s Equation

in a Two-Dielectric Region

ANTONIO F. DOS SANTOS AND VICTOR R. VIEIRA

Abstract—The validity of the reciprocity relation satisfied by the

Green’s function for Poisson’s equation in a two-dielectric region is
briefly discussed.

INTRODUCTION

In calculating the parameters of a stripline by variational tech-

niques it is often necessary to determine first a Green’s function for

the two-dimensional Poisson’s equation in the region bounded by the
two conductors [1], [2]. Contrary to the case of a single dielectric
[2], the symmetry properties of the Green’s function in a two-dielec-

tric region do not appear to have been dealt with in the literature.
The aim of this short paper is to point out that the reciprocity

relation satisfied by the Green’s function in the latter case is only
valid for a specific form of the right-hand side of the differential equa-
tion defining the Green’s function. Only the Green’s function subject
to Dirichlet boundary conditions will be considered.
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Fig, 1.

RECIPROCITY RELATION

Let G(P, r~) be the function satisfying the following conditions in

the two-dielectric region A = .41UA~ (see Fig. 1):

G=O, YGC (lb)

Gl,,+ = G]s- (lC)

(3G dG
~, –— = ~2 –—

an s+ dn ,s
(id)

where

Vz=sl +;!!.

Applying the Green’s identity [2] separately to regions AI and
A 1, in which G and its first-order partial derivatives are continuous
with the only exception of the source point (r= ro), the following
equatiuns are readily obtained:

(2a)

(2b)

where (JI and Gj denote G (r, r,) and G (r, r.z), respectively. Substitution

of (1 c) and (id) into these equations yields the reciprocity y relation

which shows that the Green’s function is symmetric in its two argu-
ments. Examination of (2a) and (2b) shows, however, that if the
RHS of (la) is simply 8 (r –r~), the reciprocity relation (3) no longer
holds. [n fact, it can be shown without much difficulty that in this

case, the function G is not the true Green’s function for Poisson’s
equaticm subject to the boundary conditions (lc) and (id).

Fin3,11y we note that in view of relation (3), to determine G com-

pletely it is sufficient to consider the case where the source point is

located in one of the two-dielectric regions, e.g., AI.
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“Unfolding” the Lange Coupler

RAYMOND WAUGH AND DAVID LACOMBE

The broad-band microstrip quadrature coupler described by

Lange [1] is shown in Fig. 1 (a). True quadrature coupling over an
octave is realized as a consequence of the interdigital coupling section
which compensates for even- and odd-mode phase velocity dispersion
over the wide frequency range. A power-split variation between the
direct and coupled ports, ports 3 and 4, respectively, in Fig. 1(a), of
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Fig. 1. (a) Lange coupler. (b) “Unfolded” Lange coupler.

less than 0.5 dB is typical with high isolation at port 2 and low-input

VSWR at port 1. This short paper shows how the Lange coupler can
be “unfolded,” that is, interchanging the roles of thedirectand iso-
latedports asillustrated in Fig. l(b). Port2 now becomes the direct
port and port 4 the isolated port. One-half of the normal coupling
section is simply turned over to produce, effectively, a broad-band

backward-wave quadrature coupler. The ability to choose either port

2 or 4 as the transmitted port offers the M IC circuit designer consider-

able flexibility when routing microwave signals unsophisticated sub-

systems where real-estate minimization is important.
Measured performance of a regular C-band Lange coupler and

that of its “unfolded” complement is presented in Figs. 2 and 3, re-
spectively. Both circuits were fabricated on 0.025-in thick 99.6-per-
cent alumina having a surface finish of 10 pin and metallized with
chrome/gold. Table I summarizes the data, indicating that either
structure yields similar results. Over slightly greater than an octave,
a mean power split of 3.35 dB was achieved with a maximum of
0.4-dB insertion loss, maximum VSWR of 1.32, and a minimum isola-
tionof 17.5 dB. Themaximum deviation from mean power split was
~ 0.5 dB for both circuits and deviation from true 90° quadrature did

not exceed 8.5°. The flat 90° relative phase shift truly verifies the

even/odd mode phase equalization concept. Both variations of the
coupler had a 0.190-in long coupling section with uniform 0.002-in
gapwidths and 0.0028-in linewidths along the coupling length, It is
noteworthy here to indicate that the design gapwidth was 0.001 in;

the extra O.001-in results from undercutting, commonly referred to as
etch factor, being approximately 0,0005 in for each line bordering the
gap. Backplating (gold electroplating) after final etch will reduce the
gapwidth but experience indicates that no significant coupling tight-
ness warrants the additional processing.

Both types of Lange couplers arereadily reproduced in Sand X

band by scaling the coupling region length, nominally a quarter
wavelength at midband. Varying linewidth and gapwidth about the
values presented above alters mainly the degree of coupling. Scaling

high in frequency has been accomplished tocoverthe 8-to 18-GHz
[2] range by altering only the coupling section length; however, care
must be exercised in preserving gapwidth and Iinewidth uniformity so

astoretain a reasonable power split. In Ka band, the ceramic micro-
strip designer must accept increased insertion loss and launcher dis-

continuity problems or revert to a more controlled medium such as
stripline for wide-band quadrature hybrid performance.

It is anticipated that this “unfolding” idea can be extended to de-
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Fig.2. Measured performance of aC-band Lauge coupler.
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TABLE I

SUMMARY OF MEASURED DATA FORA C-13AND LANGE COUPI.ER AND ITS “UNFOLDED” COMPLEMENT

BANDWIDTH MEAN POWER MAX, OBVIATION MAX . MIN. MAX , MAX, DEVIATION

SPLIT FROM MEAN INSERTION ISOLATION VSWR FROM TRUE QUADRATURE

POWER SPLIT LCSS

( ;J (dB) (dB) ( dl ) (d2)

REGuLAR LANGE

COUPLER
73 3.43 5. 5 .4 18 1.32 8.5°

“UNFOLOEO” LANGE

COUPLER
68 3.3 2 “5 .32 17.5 1.27 + 2°

velop a family of broad-band backward-wave microstrip couplers

with coupling values other than 3 dB. The significant practical ad-

vantage when designing on 0.025-in ceramic microstrip may be the

elimination of ultranarrow gapwidths as required, for example, by
Podell’s “wiggly ’’-line backward-wave coupler [3 ] for coupling values

typically under 7 dB. This extension, however, has not been pursued.
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Dissipation and Scattering Matrices

of Lossy Junctions

J. HELSZAJN

Absfrac&The purpose of this short paper is to construct the

dissipation and scattering matrices of lossy junctions in terms of the

eigenvalues of the dissipation matrix. This removes the need to rely

on inequality relations between the scattering parameters of lossy
circulators. The eigenvalues of the dissipation, scattering, and

admittance matrices are related. The eigenvalues of the dissipation
matrix give the dissipation associated with each possible way of

exciting the junction. The ones of the scattering matrix give the
reflection coefficients associated with these cliff erent excitations.
The admittance eigenvalues define in each instance the eigennet.
works of the junction. This leads to the definition of the entries of

the dissipation matrix in terms of the loaded and unloaded Q-factors

of the junction eigennetworks. The scattering matrices of a number
of 10SSY 3-port junctions are also constructed directly in terms of the

elements of the eigennetworks.

I. INTRODUCTION

The general relation between the coefficients of the scattering

matrix for a lossy symmetrical 3-port circulator has been discussed

by a number of authors [1]- [4 ]. The insertion loss has also been

derived in the case of the lumped-element circulator [5]. The most

general relation between the scattering coefficients has been given

graphically [3] in terms of the dissipation matrix. Inequality relations

for semi-ideal circulators in which the insertion loss is not zero anrJ

either the isolation or VSWR is ideal have also been &cus~ed [4].

The purpose of this short paper is to directly construct the dissipa-

tion and scattering matrices of 10SSY junctions in terms of the eigen-

values of the dissipation matrix. This removes the need to rely on

inequality relations between the scattering parameters of lossy cir-

culators. The scattering matrix of 10SSY circulators is also constructed

directly in terms of the elements of the eigennetworks.
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The \ihort paper starts by relating the eigenvalues of the dissipa.
tion, scattering, and admittance matrices. The eigenvalues of the

dissipation matrix give the dissipation associated with each possible

way of exciting the junction. The ones of the scattering matrix give

the reflection coefficients associated with these different excitations.
The admittance eigenvalues define in each instance the eigennetworks

of the j unction. This leads to the definition of the entries of the dis-
sipation matrix in terms of the loaded and unloaded Q-factors “f the

junction eigennetworks. In the most usual arrangement, one of the
eigenvalues is associated with a nonresonant shunt network that ap-
pears as a short circuit at the reference terminals of the junction, and
is therefore always unity. The other eigenvalues are the reflection

coefficients of resonant shunt networks, and the presence of loss
means that the magnitudes of these eigenvalues will depart from

unity. The amplitudes of the eigenvalues are, in general, unequal.
The theory is applied to reciprocal 3-port junctions, to 3-port

junction circulators, and to semi-ideal 3-port circulators. It may also
be applied to the scattering matrices associated with the different

stages in the adjustment of the circulators described elsewhere [7],
[11], [12].

II, EIGENVALUES OF SCATTERING AND DISSIPATION MATRICES

For a lossy circulator, the dissipation matrix Q must be positive

real [3], [6]:

Q = I – (S*)”(S) (1)

where Z is a unit matrix and S is the scattering matrix.
In the case of a symmetrical 3-pm-t junction, one has for the S

matrix

.s11 .s12 .$18

[

1s = .S13 .s11 S12 .

1

(2)

.s12 .s13 S1l

The matrix Q is given by [3], [4], [6]

[

qll q12 qla

Q = qla qll qlz
1
-1

(3)

q12 q13 qll

where

qll=l– l.sllp– 1s12(2- I.slap (4)

qlz = .S11S12* + .S12.S13* + .SIS.S1l* (5)

q13 = q12*. (6)

The matrix Q is positive real provided

I q12I < q,,. (7)

The bounds of (7) are given in [3] with ql, and I ql, I as parameters.
This gi~,es the allowable values of the scattering parameters.

In what follows, the above inequality relation between the scatter-

ing parameters will be replaced by implicit ones. This is done by

directly forming the S- and Q-matrices of the junction in terms of

eigenval ues of the dissipation matrix. These eigenvalues represent the

dissipation associated with each possible way of exciting the j unction.
They are related to the loaded and unloaded Q-factors of the junction

eigennel:works.
If the scattering and dissipation matrices have common eigenvec-

tors. their ei~envalues may be related by the following theorem...... -.Q---.


