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TABLE 111

. Fused Quartz
Strip eers(w)at
Width
(mm)  eer (st) eetr (0) 4 GHz 8 GHz 12 GH:z 16 GH:z
3.00 3.25 3.26 3.28 3.31 3.36
1.50 3.06 3.09 3.10 3.12 3.15
1.00 2.96 2.97 2.98 2.99 3.02 3.06
0.50 2.81 2.86 2.87 2.88 2.89
0.15 2.63 2.66 2.67 2.67 2.68

Alumina

2.00 8.30 7.85 8.06 8.31 8.60
0.90 7.63 7.07 7.27 7 40 7.60
0.58 7.33 6.86 6.93 7 11 7.31 7.52
0.20 6.76 6.25 6.30 6.40 6.50
0.07 6.41 6.00 6.00 6.10 6.20

ment with the static theory (Fig. 4). The orientation of the crystal-
lites depends on the manufacturing processes and is not necessarily
constant over the substrate. The anisotropy in alumina substrates
can be inconvenient, especially when used for circuits comprising
narrow-band filters and when experimentally verifying theories.
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The Green’s Function for Poisson’s Equation
in a Two-Dielectric Region

ANTONIO F. pos SANTOS axp VICTOR R. VIEIRA

Abstract—The validity of the reciprocity relation satisfied by the
Green’s function for Poisson’s equation in a two-dielectric region is
briefly discussed.

INTRODUCTION

In calculating the parameters of a stripline by variational tech-
niques it is often necessary to determine first a Green’s function for
the two-dimensional Poisson’s equation in the region bounded by the
two conductors [1], [2]. Contrary to the case of a single dielectric
[2], the symmetry properties of the Green’s function in a two-dielec-
tric region do not appear to have been dealt with in the literature.

The aim of this short paper is to point out that the reciprocity
relation satisfied by the Green's function in the latter case is only
valid for a specific form of the right-hand side of the differential equa-
tion defining the Green’s function. Only the Green's function subject
to Dirichlet boundary conditions will be considered.
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Fig. 1.

REcIPrROCITY RELATION

Let G(r, #y) be the function satisfying the following conditions in
the two-dielectric region 4 =.1,\UA4> (see Fig. 1):

1
VG = — —8(r — ro), re A (1a)
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Applying the Green's identity [2] separately to regions 4, and
As, in which G and its first-order partial derivatives are continuous
with the only exception of the source point (r=rg), the following
equations are readily obtained:

1 Gy G,
— Gy ‘r:rl = f (Gl — =G —”_‘) dl (23.)
€1 s on o/ res™
1 G, G

— —Gilrary = — f (Gl G ——‘) dl (2b)
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where (z: and G:denote G(r, r1) and G(r, rz), respectively. Substitution
of (1c) and (1d) into these equations yields the reciprocity relation

G(r, r2) = G(re, 71) 3)

which shows that the Green’s function is symmetric in its two argu-
ments. Examination of (2a) and (2b) shows, however, that if the
RHS of (la) is simply 6(r —ro), the reciprocity relation (3) no longer
holds. [n fact, it can be shown without much difficulty that in this
case, the function G is not the true Green’s function for Poisson’s
equation subject to the boundary conditions (1¢) and (1d).

Finally we note that in view of relation (3), to determine G com-
pletely it is sufficient to consider the case where the source point is
located in one of the two-dielectric regions, e.g., 4;.
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“Unfolding” the Lange Coupler
RAYMOND WAUGH anp DAVID LACOMBE

The broad-band microstrip quadrature coupler described by
Lange [1] is shown in Fig. 1(a). True quadrature coupling over an
octave is realized as a consequence of the interdigital coupling section
which compensates for even- and odd-mode phase velocity dispersion
over the wide frequency range. A power-split variation between the
direct and coupled ports, ports 3 and 4, respectively, in Fig. 1(a), of
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less than 0.5 dB is typical with high isolation at port 2 and low-input . g

VSWR at port 1. This short paper shows how the Lange coupler can Fig. 2. Measured performance of a C-band Lange coupler.
be “unfolded,” that is, interchanging the roles of the direct and iso-
lated ports as illustrated in Fig. 1(b). Port 2 now becomes the direct
port and port 4 the isolated port. One-half of the normal coupling
section is simply turned over to produce, effectively, a broad-band
backward-wave quadrature coupler. The ability to choose either port
2 or 4 as the transmitted port offers the MIC circuit designer consider-
able flexibility when routing microwave signals in sophisticated sub-
systems where real-estate minimization is important.

Measured performance of a regular C-band Lange coupler and
that of its “unfolded” complement is presented in Figs. 2 and 3, re-
spectively. Both circuits were fabricated on 0.025-in thick 99.6-per-
cent alumina having a surface finish of 10 uin and metallized with
chrome/gold. Table I summarizes the data, indicating that either
structure yields similar results. Over slightly greater than an octave,
a mean power split of 3.35 dB was achieved with a maximum of
0.4-dB insertion loss, maximum VSWR of 1.32, and a minimum isola-
tion of 17.5 dB. The maximum deviation from mean power split was
+0.5 dB for both circuits and deviation from true 90° quadrature did
not exceed 8.5°. The flat 90° relative phase shift truly verifies the
even/odd mode phase equalization concept. Both variations of the
coupler had a 0.190-in long coupling section with uniform 0.002-in 1.00
gapwidths and 0.0028-in linewidths along the coupling length. It is
noteworthy here to indicate that the design gapwidth was 0.001 in; 30 __
the extra 0.001-in results from undercutting, commonly referred to as \< 1SOLATI ON
etch factor, being approximately 0.0005 in for each line bordering the 20 - . .
gap. Backplating (gold electroplating) after final etch will reduce the
gapwidth but experience indicates that no significant coupling tight-
ness warrants the additional processing.

Both types of Lange couplers are readily reproduced in .S and X 0
band by scaling the coupling region length, nominally a quarter COUPLED
wavelength at midband. Varying linewidth and gapwidth about the 4 = R -
values presented above alters mainly the degree of coupling. Scaling ST T B
high in frequency has been accomplished to cover the 8- to 18-GHz 3 =~ = =
[2] range by altering only the coupling section length; however, care
must be exercised in preserving gapwidth and linewidth uniformity so
as to retain a reasonable power split. In K« band, the ceramic micro- f/\/
strip designer must accept increased insertion loss and launcher dis- |
continuity problems or revert to a more controlled medium such as 4 5 6 7 8 9
stripline for wide-band quadrature hybrid performance. FREQUENCY (GHz)

It is anticipated that this “unfolding” idea can be extended to de- Fig. 3. Measured performance of a C-band “unfolded” Lange coupler.
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TABLE 1
SUMMARY OF MEASURED DATA FOR A C-BAND LANGE COUPLER AND ITS “UNFOLDED” COMPLEMENT
BANDWIDTH | MEAN POWER | MAX,DEVIATION MAX, MIN. MAX, | MAX, DEVIATION
SPLIT FROM MEAN INSERTION | ISOLATION | VSWR FROM TRUE QUADRATURE
POWER SPLIT LCSS
(% (dB ) (dB) (d3) (dn )

REGULAR LANGE o

COUPLER 73 3.43 £ .5 b 18 1.32 8.5
"UNFOLDED"' LANGE o

COUPLER 68 3.3 x5 .32 17.5 1.27 x2

velop a family of broad-band backward-wave microstrip couplers
with coupling values other than 3 dB. The significant practical ad-
vantage when designing on 0.025-in ceramic microstrip may be the
elimination of ultranarrow gapwidths as required, for example, by
Podell’s “wiggly”-line backward-wave coupler [3]for coupling values
typically under 7 dB. This extension, however, has not been pursued.
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Dissipation and Scattering Matrices
of Lossy Junctions

J. HELSZAJN

Abstract—The purpose of this short paper is to construct the
dissipation and scattering matrices of lossy junctions in terms of the
eigenvalues of the dissipation matrix. This removes the need to rely
on inequality relations between the scattering parameters of lossy
circulators. The eigenvalues of the dissipation, scattering, and
admittance matrices are related. The eigenvalues of the dissipation
matrix give the dissipation associated with each possible way of
exciting the junction. The ones of the scattering matrix give the
reflection coefficients associated with these different excitations.
The admittance eigenvalues define in each instance the eigennet-
works of the junction. This leads to the definition of the entries of
the dissipation matrix in terms of the loaded and unloaded Q-factors
of the junction eigennetworks. The scattering matrices of a number
of lossy 3-port junctions are also constructed directly in terms of the
elements of the eigennetworks.

I. INTRODUCTION

The general relation between the coefficients of the scattering
matrix for a lossy symmetrical 3-port circulator has been discussed
by a number of authors [1]-[4]. The insertion loss has also been
derived in the case of the lumped-element circulator [5]. The most
general relation between the scattering coefficients has been given
graphically [3]in terms of the dissipation matrix. Inequality relations
for semi-ideal circulators in which the insertion loss is not zero and
either the isolation or VSWR is ideal have also been discussed [4].

The purpose of this short paper is to directly construct the dissipa-
tion and scattering matrices of lossy junctions in terms of the eigen-
values of the dissipation matrix. This removes the need to rely on
inequality relations between the scattering parameters of lossy cir-
culators, The scattering matrix of lossy circulators is also constructed
directly in terms of the elements of the eigennetworks.
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The short paper starts by relating the eigenvalues of the dissipa-
tion, scattering, and admittance matrices. The eigenvalues of the
dissipation matrix give the dissipation associated with each possible
way of exciting the junction. The ones of the scattering matrix give
the reflection coefficients associated with these different excitations.
The admittance eigenvalues define in each instance the eigennetworks
of the junction. This leads to the definition of the entries of the dis-
sipation matrix in terms of the loaded and unloaded Q-factors of the
junction eigennetworks. In the most usual arrangement, one of the
eigenvaliles is associated with a nonresonant shunt network that ap-
pears as a short circuit at the reference terminals of the junction, and
is therefore always unity. The other eigenvalues are the refiection
coefficients of resonant shunt networks, and the presence of loss
means that the magnitudes of these eigenvalues will depart from
unity. The amplitudes of the eigenvalues are, in general, unequal.

The theory is applied to reciprocal 3-port junctions, to 3-port
junction circulators, and to semi-ideal 3-port circulators. It may also
be applied to the scattering matrices associated with the different
s[tag]es[in ]the adjustment of the circulators described elsewhere [7],

11, [12].

II. EIGENVALUES OF SCATTERING AND DisSSIPATION MATRICES

For a lossy circulator, the dissipation matrix @ must be positive
real [3], [6]:

Q =1~ (S%7(S) M
where I is a unit matrix and S is the scattering matrix.

In the case of a symmetrical 3-port junction, one has for the S
matrix

Su Si 513"
S=1Ss Su S} (2)
Sz Sz SuJ

‘The matrix @ is given by [3], [4], [6]

i qi2 G2
Q=1qs qu (Ilz-l (3)
qiz2 Q13 qu
where
=1~ ]Sn’z—- [512[2—- [513[2 @
g1z = SuSis* + S12515* + S1sSu* (5)
q1z = q12*. (6)

The matrix @ is positive real provided
| 2] < qu. @)

The bounds of (7) are given in [3] with gu and | gis| as parameters.
This gives the allowable values of the scattering parameters.

In what follows, the above inequality relation between the scatter-
ing parameters will be replaced by implicit ones. This is done by
directly forming the S- and @Q-matrices of the junction in terms of
eigenvalues of the dissipation matrix. These eigenvalues represent the
dissipation associated with each possible way of exciting the junction.
They are related to the loaded and unloaded Q-factors of the junction
eigennerworks. \

If the scattering and dissipation matrices have common eigenvec-
tors, their eigenvalues may be related by the following theorem



